Performance Evaluation of an Agent-Based
Resource Management Infrastructure for Grid Computing

Junwei Cao, Darren J. Kerbyson, and Graham R. Nudd
High Performance Systems Laboratory, Department of Computer Science,
University of Warwick, Coventry, CV4 7AL, U. K.
{junwei, djke, grn}@dcs.warwick.ac.uk

Abstract Scalability. The grid may potentially encompass all high

_ _ _ performance computing resources. A given component
~ Resource management is an important infrastructure of the grid will have it's own functions, resources, and
in the grid computing environment. Scalability and gnyironment. These are not necessarily geared to work

adaptability are two key challenges in the (ogether in the overall grid. They may be physically
implementation of such complex software systems. Inthis |qcated in different organizations and may not be
work we introduce a new model for resource aware of each other.

management in a metacomputing environment using aagaptability. A grid is a dynamic environment where the
hierarchy of homogeneous agents that has the capability location, type, and performance of the components are
of service discovery. The performance of the agent constantly changing. For example, a component
system can be improved using different combinations of osource may be added to, or removed from, the grid
optimisation strategies. A modelling and simulation at any time. These resources may not be entirely
environment has been developed in this work that yegicated to the grid, hence their computational
enables the performance of the system to be investigated. capabilities will vary over time.

A simplified model of the resource management o
infrastructure is given as a case study and simulation ~ Resource management and scheduling infrastructures
results are included that show the impact of the choice of must be provided to address these challenges. Existing

performance optimisation strategies on the overall techniques cannot meet the requirements of both
system performance. scalability and adaptability simultaneously. In this work,

we present a new model for the resource management
infrastructure using a hierarchy of homogeneous agents

1. Introduction which has the capability of service discovery.
An agent-based hierarchical model is used to address

A Computational Grid requires both hardware and the problt_am of the scalability, which is an extension of
software infrastructures to provide dependable, OUT Previous work [6]. Software agents have been

consistent, pervasive, and inexpensive access to high-ené‘ccept?d to be a powerful high-level abstraction for the
computational capability [11,13]. An ideal grid modellmg of complex software systems [12].

environment should provide access to the available M this work, an agent is considered to be both a
resources in a seamless manner, which requires mam:;.erwce provider an_d a service rgquestor. Serv.|ce IS an
design features. These include administrative hierarchy,'mportan_t cqncgpt in-many d|str|buteq .computlng and

communication services, information services, haming Communication infrastructures (e.g. Jini [1], Bluetooth

services, resource management and scheduling, securit{lg])' We use service herg to describe the details of a
and authorization etc [2]. resource within the grid. Resource management,

The overall aim of the resource management is to scheduling, and allocation can be abstracted to the
efficiently schedule applications that need to utilize the prolé:es%ses of ser\./umzlvemsgmemr;nd serV|9&i|§cov§ry e
available resources in the metacomputing environment. de;prmanced ISSUES Ianse W ?n ser?/!ce Is advertise
In essence, it should turn a radically heterogeneous2nd discovered in a large-scale multi-agent system.

environment into a virtual homogeneous one, which Different optimisation strategies can be used to improve
introduces two key challenges: ' the system efficiency. A performance modelling and

simulation environment has been developed that enables
the performance of the system to be investigated. A case

study, that models a simplified grid environment, is from a case study concerning a small grid environment
included. Simulation results show the impact of the are presented.
choice of different performance optimisation strategies on
the efficiency of the resource management infrastructure. 2, Agent-Based Hierarchical Model
This work is based on existing resource management
and prediCtion Capabilities of the PACE toolset [4,5] The In this section a homogeneous agent-based
motivation to develop a Performance Analysis and hjerarchical model is introduced as the basis of
Characterization Environment (PACE) is to provide understanding the service advertisement and discovery
quantitative data concerning the performance of mechanisms that can be used to implement the functions
sophisticated applications running on local high of resource management and scheduling.
performance resources [15]. It is envisaged that the agent The hijerarchical model is illustrated in Figure 1.
infrastructure developed here will be amalgamated with There is a single type of the component, the agent, which
the capabilities of PACE for grid environments. is used to compose the whole system. This is an
Several solutions have been offered that address togpstraction of the computing resource in the software
some extent the issues of resource management anghfrastructure of the resource management. Each agent
scheduling. Our work is different from these in a number has the same set of functions. They can send requests and
of ways. Some of the principle existing work is described provide services. Every agent can act as a router between
below. a request and a service. In Figure 1 different terms are

e Condor [16] — uses the matchmaker/entity structure uged to differentiate .the level of the agent in the
(which can be both provider and requestor), in which Niérarchy. The broker is an agent that heads the whole
the matchmaker becomes the bottleneck of the Systernhlerarchy, mamtglnlng .aII service information of the
Achieving scalability is difficult, and focuses more on system. A coordmator. is an agent that heads a sqb-
protocol issues than on performance issues. hlerar.ch.y. A leaf-node is actually termed an agent in this

» Globus [8] — uses a Metacomputing Directory Service description.

(MDS) [10], which adopts the data representations

and API defined by the LDAP service [18]. It is

designed to meet requirements of both scalability and
dynamic resources. Performance issues have not been

a key consideration in its implementation.

» Hector [17] — uses a master/slave allocator to manage
the dynamic resources, in which the issue of
scalability is not addressed. @: Coordinator

e Legion [9] — wuses a Resource Management
Infrastructure (RMI) in which the information @:Agent
collection is very similar to the information service in
Globus. Objects are used as the main system
abstraction throughout, whereas we use agents as a Figure 1. Agent hierarchy
high level abstraction.

» NetSolve [7] — uses an agent as a database and a When a new agent wants to join the system, in the
resource broker to implement resource management.hierarchical model, it will broadcast to find its nearest
The coordination of different agents are not existing agent. An agent can only have one connection to
considered in detail. an agent higher in the hierarchy to register with, but be

« Ninf [14] — the metaserver component monitors registered with many lower level agents. All requests that
multiple computing servers on the network, and enter a sub-hierarchy must arrive at the coordinator of
performs scheduling and load balancing of client the sub-hierarchy first and then dispatched to the lower
requests (similar to the agents in the NetSovle). agents. From the view of service providers, a sub-

hierarchy can be regarded just as an agent.

The rest of the paper is organised as follows: In If an agent has the required service information, it can
Section 2 the homogeneous agent hierarchy is presentedcontact the target agent directly. Otherwise, it must
In Section 3, the metrics used for the performance search its local agents, or ask its upper agent, for a
evaluation of this hierarchy, and the different service discovery (ie. to find an agent that can provide
optimisation strategies available are described. In Sectionthe requested service). The lower or upper agent can also
4 the simulation environment is described and resultsask other agents for assistance until the service

: Broker

information is found. The agent can then connect directly service information has been pushed to the other
to the target and directly request the service. All agents during the advertising processes, and so this is
connections between the agents are broken after use of a puredata-pushmodel.
the service is finished.

The services offered by an agent can change over
time. When this occurs, the corresponding service

information needs also to be updated. The dynamics of C o T
service information is far less than the frequency of

this system increases the difficulty of resource .
. L . service request, the pure data-push model can be used to
management and allocation. The essential issue is how _ - . ! .
:achieve high performance service discovery. In extremely
an agent advertises its services and also coordinates with ;)
. . ; ! dynamic systems, where the frequency change in the
other agents to discover the required services in the most ” " . . .
. service information is far greater than the request
efficient way.
frequency, the pure data-pull model can be used to
Service AdvertisementThe service information of an achieve high performance. Most practical systems will
agent can be advertised in the hierarchy (both up andhave characteristics in-between these two extremes. The
down). Different strategies can be used to decide performance issues are discussed in greater detail in
when, and how, to advertise a service but with Section 3.

different performances. This is discussed in greater

Different systems can use different optimisation
strategies to achieve high performance. For example in
static systems, where the frequency of change in the

detail in Section 3. 3. Service Discovery Performance
Service DiscoveryWhen an agent requests a service, it
will first check its own knowledge to see if it is In this section we introduce the basic performance

already aware of the service. If it iS, it will contact the issues in the service discovery, since we view the
target agent directly. Otherwise it may contact its resource management infrastructure as an agent-based
upper agent until the available service is found. hierarchical system and the function implementation of
The main data type for the advertisement and the scheduling and allocation as the process of the service

discovery is the Agent Capability Table (ACT). Different advertisement and discovery. Some common performance
strategies can use different kinds of ACTs. The process of Metrics are given first and different optimisation
the service advertisement and discovery corresponds tootrategies are discussed next.

the maintenance and lookup of the ACTs. The basic]]]

structure of an ACT item consists of two parts: agent 3-1. Service Discovery Metrics

identity and service information. The service information

is system dependent. For example, simple service There are kinds of performance criteria that can be
information can include: the service name, its Used todescribe the service discovery performance part of

performance, its lifetimgits scope, and so on. Complex Lhe m(ci)del. Vr\l/hat IS cons@ered as l:_l|gh perforhmance
service information can also include the service interface 9¢P€NYS ON the system requirements. However, there are

information. However, as mentioned above, this work some;l common Ch?trﬁde”i’t'csd()f tlhe Syﬁ_tﬁm thatl 3“?
focuses on performance issues. usually a concern of the system developer. These include:

Two extreme situations can be considered: Discovery Speed
Each request from an agent can pass one or more

discovery. In this situation no ACTs are maintained in agents in order to find a target agent that can provide the
the agents. Each agent has no knowledge of therequired service. The performance of the discovery

services offered by other agents. When a service isprocesst. IS ma}lnly tt;]aseql on ftr(;etnumber OT rgutlng
request, a service discovery process is required whichonnections, -since he sizeé of data communication 1S

may be complex and traverse a large number of agentssma”' Fewer connections has a quick discovery process,

in the system. The service information is pulled from and the higher system performance. In the whole system,
the agents at discovery time, and so this is a pure there may be simultaneous service requests. The average

data-pullmodel service discovery speedjs defined as:

2. Full service advertisement — requires no service vzé @
discovery. In this situation, each agent advertises to all where r is the total number of requests during a
the other agents. Hence each agent has complete . : . .

; .) certain period, andi is the total number of connections
knowledge on the available services in the system and .
. . . ._made for the discovery.
no discovery process is required. When a request is
made, the service is found in any agents ACT. The

1. No service advertisement — results in complex service

System Efficiency

The cost for the service discovery also includes There are several kinds of performance optimisation
connections made for service advertisement and datastrategies that can be considered. Most have been used in
maintenance. Service advertisement may add additionalcurrent practical systems with an assumption that the
workload to the system. For each request to find a performance can be optimised. The effects of these
corresponding service, the total number of connections, strategies are not discussed in detail especially when the
c, between agents includes those for the discoverydynamics of the system increases. The combination of
processes], and also those for the advertising processes, these strategies may also lead to a different performance.

a Use of cache

Caching previous service discovery results is a good
strategy for performance optimisation that assumes a
request may be required more than once. Cached service
information is expressed as C_ACT. When an agent

c=d+a (2)
The efficiency of the system can be considered as the
ratio of the total number of requests, during a certain
period, to the total number of connections

e=L 3) sends a request for service discovery, the result can be
¢ stored in C_ACT, and hence looked up when next
Load Balancing requested. If however the service has changed and is not

In some of the systems when the system resources ar@vailable any more, the agent may update the C_ACT
critical, load-balancing may be an important issue. In and perform another service discovery.
this system, no agents are used only for service discovery. Many current network applications use caches to
There is no reason to have any agent with a higher optimise performance. Using cached service information
discovery workload than any other. For a system with may result in direct service discovery in one step.
agents, the workloady, of each can be described as Another advantage of using cache is that it adds no
W, =0, +i, (k=1....n) 4) addiiional data maintenance workload. However, if the
where oc and ix are the outgoing and incoming service information cnanges frequently compared to thia
connection times. We can use the mean square deviatiod €uest frequency, using cache may decrease the service

of the w, to describe the load balancing level of the discovery speed. So the efficiency of using cache depends
systemp: on the characteristics of the actual system.

_o _ Using local and global knowledge
b= 2 =W where W:zki:vk ®) Adding some local or global knowledge to an agent is
: also a performance optimisation that assumes that
services are often required by local agents. A request may
Success Rate need less connections to find the local service as the
In some of the performance optimisation strategies the higher-level agents need not take part in the discovery
discovery model cannot guarantee to find the target process. The system load can also be reduced.
service (that may actually exist in the system). However, In order to coordinate the agents to find the services,
in a general system a reasonable service discoverytwo kinds of ACTs can be used in each agent to record
success rate should always be achieved. The success ratéhe service details and information, which are local
f, describes successful service discovery: (L_ACT) and global (G_ACT). Each agent has one
f-r—fxmo% ®) L ACT to .record tne aervice information al_Joth the
T agents registered with it. If a request is within the

Most of the time, these service discovery metrics are capabilities of the local agents, the agent may directly
conflictive, that is not metrics can be high at the same dispatch the request to the target agent. The G_ACT in
time. For example, a quick discovery speed does notan agentis actually a copy of its upper agent's L_ACT.
mean high efficiency, as sometimes quick discovery may Thus an agent can have the information of more services
be achieved through the high workload encountered in and be able to contact them directly without submitting
service advertisement and data maintenance, leading tdhe request to the upper agent.
low system efficiency. It is necessary to the critical ~ Unlike the C_ACT, additional data maintenance
factors of the practical system, and then to use theWorkload is needed for the L_ACT and G_ACT. There
different performance optimisation strategies to reach are basically three ways to maintain their contents.
high performance. Firstly, the agent itself can go to pull the corresponding
data directly. For L_ACT, the agent can ask its lower
agents for their L_ACT, and for G_ACT, the agent can

3.2. Performance Optimisation Strategies ,)
ask its upper agent for its L_ACT. Secondly, the

maintenance of the L_ACT and G_ACT can also be will become complex when different optimisation
driven by changes in service. If contents in one L_ACT strategies are used. In this section, a modelling and
of an agent are changed, it may report this to the L_ACT simulation environment is introduced to aid the
of its upper agent, and may also inform the change to theperformance evaluation process. A simplified model of
G_ACTs of its lower agents. Thirdly, the L_ACT and the resource management infrastructure is given as a case
G_ACT can also be updated in the same way as thestudy and simulation results are included to show the
C_ACT. impact of the choice of the performance optimisation
The process for the service discovery using the strategy on the system performance.
L_ACT and G_ACT is also different from that using the
C_ACT. When an agent receives a request, it will look 4.1. Modelling
up its L_ACT. If the agent finds that one of its lower
agents can provide the service, it will dispatch the
request directly to the corresponding agent. Otherwise, it
will look up its G_ACT. If G_ACT shows that another
agent can provide the service, it will dispatch the request
to that agent. If the service is not found in either, the
agent will ask its upper agent for further service
information. After the upper agent returns the result, it
can update its own G_ACT and return the result to the
agent who originated the request.

There are four kinds of information that effect the
system performance and must be defined in the
performance model. These include: the agent hierarchy,
the services, the requests, and the optimisation strategies.
The modelling and simulation environment provides
graphical interfaces for the user to perform the modelling
activity at both the agent level and the system level. The
only components that exist in the model are agents, so
agent-level modelling can be used to define all the model
attributes for the simulation. However, system-level
Limit service lifetime modelling is also necessary for modelling agent mobility,

Another performance optimisation strategy is adding a service and request distribution, and so on. A system-
service lifetime limitation to the attributes of the service level strategy definition can affect all of the agents in the
information. This lifetime should be pre-estimated before model and ease the modelling process.
the service is advertised. The agent can check the ACTs

frequently and delete out-of-date service information. Table 1. Example model
This can avoid unnecessary routing processes and
increase the speed of service discovery. There is also no Agents Upper Agent
additional data maintenance workload. However, the gem -
lifetime of some services in the system may be sprite~0...... sprite~49 gem
unpredictable. tup~O0......tup~49 sprite~9
Limit scope cola~O0...... cola~49 sprite~19
The scope in which a service can be advertised and tango~0...... tango~49 sprite~29
discovered can also be pre-defined by attributes to the pepsi~0...... pepsi~49 sprite~39
service information. The service need only be advertised (a) Agents
within a certain scope of the system, which can reduce
the advertisement and data maintenance workload. The Name Relative | Freq| Lifetime | Scopdg Dist
search for a service can also be limited to a certain scope Performancq (%)
avoiding unnecessary discovery processes. However, pre- HPC 1000 5 | Unlimited Top| 20
knowledge about the service and its requests are needed HPC 600 10 | Unlimited Top| 40
to achieve optimisation. Mismatches between the scope HPC 200 20 | Unlimited Top| 60
limitation of a service and of a request may result in the (b) Services
low success rate of the service discovery.
Name Relative Freq. Scope Dist.
4. Performance Evaluation Performance} (%)
HPC 100 5 Top 80
In the previous sections a homogeneous agent HpC 300 10 Top 60
hierarchy which has a service discovery capability has ™ Hpc 500 20 Top 40
been described. This is used to give a model of the " pc 300 40 Top 20
resource management infrastructure, which is a large-—pc 1000 60 Top 10

scale distributed software system with a highly dynamic
behaviour. However, performance evaluation of such a
system is a difficult task, because the system behaviour

(c) Requests

The attributes of an example model are shown in model must use the same performance optimisation
Table 1. This is composed of about 250 agents, eachstrategies. A mixture of optimisation strategies is possible
representing a high performance computing resource thatout is not considered in these experiments. In the
may provide a computing capability with a different simulation results included in Section 4.2, a comparison
performance. These agents are organised in a hierarchyof the different strategies is given by considering their
which has three layers. The identity of the root agent is impact on the system performance.
gem There are 50 agents registered gem four of
which each also have 50 lower agents. The hierarchy is4.2. Simulation
illustrated in Table 1(a).

To simplify the modelling processes, we define the = When the simulation begins, a thread is created to
services and requests in the agents at the system levelcalculate the statistical data step by step. The phase for
The name of the services and requests arédRIC, but request sending and the service discovery is the key part
with different relative performance values. In practical of the whole simulation process. The simulation
systems, service performance can be any value such agnvironment can show the results in multiple views,
execution time, memory size, and so on, which can beincluding a step-by-step, accumulative view etc. For
predicted using the tools such as PACE [15]. The example, Figure 2 shows the simulation results for
frequency value of the service, 5, for example, means theexperiment 4. The number of requests), (the
service performance will change between 0 and theconnections for advertisements),(the connections for
performance value once every 5 steps during thediscovery (), the discovery speedv), and the system
simulation. The frequency value of the request, 5, for efficiency €) are all shown. We assume that the load
example, means a request will be sent once every 5 stepdalancing and discovery success rate are not critical in
during the simulation. A step can be designed as anthis study. Attention is given to the discovery speed and
arbitrary number of seconds. In practical systems, thethe system efficiency.
frequency values must be monitored while the system is ' : -
operational. The performance optimisation strategies of !‘F‘ﬂhh*w“’ﬂ#'w"m
the lifetime and scope limitations are not used in the
model. The distribution value is used to define how many
agents will be configured with the corresponding service . — = . d - =
or request. The simulator will choose agents randomly to o ;))
be configured with these system level definitions before

simulation begins. Mllnrlﬂﬁlikl’\lﬂﬂw‘dﬁ. .J

Table 2. Performance optimisation strategy

L
Experiment Number X e TR g e -
OptimisationStrategyy 1| 24 3 4 5 { hidlba 1xLld IE 1
Using C_ACT v lwlwl vl v w J ll‘-“ﬂ #W"". "ﬁ'lli
Using L_ACT Sl vl v
Using G_ACT | |
Updating L_ACT* v | v 4 B 'h e E -
Updating G_ACT* v | v | v T Az T
Advertising L_ACT vl vl o]iﬂ'ﬁl'l"Jr"'-u"‘r' il e
Multicasting L ACT v
* Here the updating frequency was once every 10 steps. |
i ST (1] 1 Llars 200

Finally, the model must define how each agent uses =7 H, .
the cache, local, and global knowledge to optimise the L "I"'q],-“*I 4
performance. In this case study six experiments have ooy . J
been considered, each of which has the same
configurations as described in Table 1, but has different
optimisation strategies as described in Table 2. To
simplify the experiments, we only define the strategies at
the system level, which means all of the agents in the Figure 2. Simulation views

i Siaps 200 1 Slape o]

(a) Step-by-step view (b) Accumulative view

200
The Simulation results for all of the experiments are

summarised in Table 3. Each of the six situations are = 150 1
described in detail below. = mv
#, 100 Oe

Table 3. Simulation results S

Experiment Number

Metric 1 2 3 4 5 6 0

r |12296| 12354 1257p 12560 126@45 11715 12 3 4 5 & He
a 0 0 5604| 8051 1017P 2851ks Figure 3. Choice of optimisation strategies

d 65595| 51113 743% 690 6910 7046

v 0.18| 0.24] 1.69] 187 1.82 1.8

e 0.18 | 0.24] 0.96] 0.84 0.74 0.0
Note: All values are accumulative results after 200 steps.

1 The impact of the choice of the optimisation strategies

i on the discovery speed and the system efficiency, is
shown clearly in Figure 3. It can be seen that the fourth
experiment has a good balance between the discovery
speed and the system efficiency for this example model.
It has a higher discovery speed in comparison to the
third, with only slight lower system efficiency.

Changing the G_ACT update frequency will also

change the performance of the model. Figure 4 shows the

In the second, the cache is used in each agent, Whichr(alatlon between ihe G_ACT update frequency and the

needs no extra data maintenance and imoroves th system performance. In these experiments, the strategies
) i 'mp > M&hat are used are all the same as described in the fourth
discovery speed and system efficiency a little. This is xperiment of Table 2. The only difference is the

because the dynamics of the services reduce the effects og ACTs in the agents are updated with different

the cached information and so becomes unreliable.
. . . . frequencies, which may lead to differences in the amount
L ACT is added in each agent in the third . .
. . . of system workload for service advertisement. The best
experiment. Each time the service performance changes . g
trade-off between discovery speed and system efficiency

the corresponding agent will advertise the change is once every 20 simulation steps in this example model
upward in the hierarchy. This adds additional data y P P '

maintenance workload to the system, which decreases the 200
discovery workload extremely. So the discovery speed 1804, .3
and the system efficiency are all improved. 160 e —
G_ACT is also added in the fourth experiment. Each
agent will get a copy of the L_ACT of its upper agent
once every 10 simulation steps, which will add additional g -
data maintenance workload. From the simulation results, < 100 e e B
we can see this improves the discovery speed further. But > so o
the system efficiency decreases a little because of the 60 /'/
additional data maintenance. 2 /'/
Another maintenance of the L_ACT is added in the
fifth experiment. Each agent copies the L_ACTs of its 20
lower agents once every 10 steps. This doesn’t improve
the discovery speed any more and only adds more data
maintenance workload, which decreases the system

In the first experiment, no strategies are selected.
Each time the request arrives, a lot of connections must
be made and traversed in order to find the satisfied
service. In this situation, the discovery speed and system
efficiency are both rather low.

140

120

1 2 5 10 20 30 40 80 Never
G_ACT Updating Frequency in Steps

efficiency further. Figure 4. Choice of G_ACT update frequency
Another maintenance of the G_ACT is added in the
sixth experiment. The change of the L_ACTs will be In summary, the example model should use all of the

passed to the G_ACTs of the lower agents. This improvesC_ACT, L_ACT, and G_ACT. L _ACT should be
the discovery speed only a little, but adds further data maintained by the real-time service advertisement. The
maintenance workload, which decreases the systemG_ACT should be maintained by updating once every 20
efficiency extremely. steps. In fact, the performance of the example model can
be improved further if using agent level modelling.

Different agents can use a mixture of different strategies
to achieve higher performance of the whole system. This [6]
is not discussed in detail here.

5. Conclusions

The resource management system in the grid[7]
computing environment will be a large-scale distributed
software system with high dynamics. In this work, we
have developed a homogeneous agent-based hierarchicd®
model to meet the requirements of the scalability. We
also abstract the resource management, scheduling and
allocation into the processes of the service advertisement
and discovery. The performance issues arise from the[9]
high dynamics of the system. There are several common
performance optimisation strategies can that be used in
this system. However, the evaluation of their impacts on
the system performance is difficult. In this work a
modelling and simulation environment has been
implemented to aid the performance evaluation process.
A case study is given and the simulation results show
how to examine the different metrics for the system to
order to achieve higher performance.

Our future work will focus on the implementation of a
resource management infrastructure using
methodology of the agent hierarchy and the service
discovery. The infrastructure will be integrated with the

485-492, 2000.

J. Cao, D. J. Kerbyson, and G. R. Nudd, “Dynamic
Application Integration Using Agent-Based Operational
Administration”, in Proceedings of 'S International
Conference on Practical Application of Intelligent Agents
and Multi-Agent Technology, Manchester, UK, pp. 393-
396, 2000.

H. Casanova, and J. Dongarra, “Applying NetSolve’'s
Network-Enabled Server”, IEEE Computational Science &
Engineering, Vol. 5, No. 3, pp. 57-67, 1998.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke, “A Resource
Management Architecture for Metacomputing Systems”, in
Proceedings of IPPS/SPDP '98 Workshop on Job
Scheduling Strategies for Parallel Processing, 1998.

S. J. Chapin, D. Katramatos, J. Karpovich, and A.
Grimshaw, “Resource Management in Legion”, Future
Generation Computer Systems, Vol. 15, No. 5, pp. 583-
594, 1999.

[10] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,

W. Smith, and S. Tuecke, “A Directory Service for
Configuring High-Performance Distributed
Computations”, in Proceedings of 6EEE Symposium on
High-Performance Distributed Computing, pp. 365-375,
1997.

[11] I. Foster, and C. Kesselman, “The Grid: Blueprint for a

New Computing Infrastructure”, Morgan-Kaufmann, 1998.

the[12] N. R. Jennings and M. J. Wooldridge (eds), “Agent

Technology: Foundations, Applications, and Markets”,
Springer-Verlag, 1998.

PACE functionality [15], which can be used to predict [13] W. Leinberger, and V. Kumar, “Information Power Grid:

the service performance information dynamically. At the
meta level, the performance optimisation strategies of the
agents should have the ability to be adjusted according to
real-time performance evaluation results produced by the
modelling and simulation environment introduced above.
The overall aim is to keep the whole infrastructure more
efficient to fulfil the functions of resource management.

The New Frontier in Parallel Computing”, IEEE

Concurrency, Vol. 7, No. 4, pp. 75-84, 1999.

[14] H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M.

Sato, and S. Sekiguchi, “Utilizing the Metaserver
Architecture in the Ninf Global Computing System”, in

Proceedings of High-Performance Computing and
Networking , Lecture Notes on Computer Science 1401,
Springer-Verlag, pp. 607-616, 1998.

[15] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C.

References

[1] K. Amold, B. O'Sullivan, R. Scheifer, J. Waldo and A.
Woolrath, “The Jinil Specification”, Addison Wesley,

1999.

M. Baker, R. Buyya, and D. Laforenza, “The Grid:
International Efforts in Global Computing”, to appear in
ACM Computing Surveys, 2000.

J. Bray, C. Sturman, “Bluetooth: Connect Without
Cables”, Prentice Hall, 2000.

(2]

3]

[4]
“Modeling of ASCI High Performance Applications Using
PACE”, in Proceedings of 5 Annual UK Performance
Engineering Workshop, Bristol, UK, pp. 413-424, 1999.

[5] J.Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Performance Modeling of Parallel and Distributed
Computing Using PACE”, in Proceedings of "L9EEE
International Performance, Computing and
Communication Conference, Phoenix, Arizona, USA, pp.

J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd, [17]

Perry, J. S. Harper, and D. V. Wilcox, “PACE — A Toolset
for the Performance Prediction of Parallel and Distributed
Systems”, International Journal of High Performance
Computing Applications, Special Issues on Performance
Modelling — Part |, Sage Science Press, Vol. 14, No. 3, pp.
228-251, Fall 2000.

[16] R. Raman, M. Livny, and M. Solomon, “Matchmaking:

Distributed Resource Management for High Throughput
Computing”, in Proceedings of "7 IEEE International
Symposium on High Performance Distributed Computing,
Chicago, lllinois, July 1998.

S. H. Russ, K. Reece, J. Robinson, B. Meyers, R. Rajan,
L. Rajagopalan, and C. Tan, “Hector: An Agent-Based
Architecture for Dynamic Resource Management”, IEEE
Concurrency, April-June, pp. 47-55, 1999.

[18] W. Yeong, T. Howes, and S. Kille, “Lightweight Directory

Access Protocol”, RFC 1777, Draft Standard, 1995.

